Intro to Generative Art

Noise, Perception, and Learning: Application in AI Art IAP 2023
\square WHAT IS GENERATIVE ART?

02

EARLY
GENERATIVE ART
\square 03

TRY IT YOURSELF

$04 \begin{aligned} & \text { MODERN GENERATIVE } \\ & \text { ART }\end{aligned}$

05 AI ART
$06 \begin{aligned} & \text { CLASS } \\ & \text { OVERVIEW }\end{aligned}$

The Instructors

01 What is Generative Art?

Art that in whole or in part has been created with the use of an autonomous system

Attributes of generative art

- Generated using basic rules such as:

O Games
O Patterns
O Mathematical functions
O Algorithms

- Can Introduce "Randomness"

O Pseudorandom noise generation
O Complex functions not interpretable by humans

Rules

Noise

- White Noise

O Flat frequency content
O Maximum entropy

- Perlin Noise

O Created for Tron
O More smooth / less random than true random noise
O Also called Simplex Noise

Examples with Generative Art

Patterns

Randomness

Recursion

Games

- Game of Life
- Musical dice games

ORoll a dice and play a sound according to rules

- Fugues
- Brian Eno

What is an algorithm?

Ols all music algorithmic
-What about carilloning?

```
gibber
intro
// hit alt+enter to run all code
// or run line/selection with ctrl+enter.
// ctrl+period to stop all sounds.
Theory.tuning = 'slendro
Theory.mode = null
verb = Reverb( 'space' ).bus()
delay = Delay( '1/3' ).bus().connect( verb, .1 )
perc \(=\) FM[3] ( 'perc' )
. connect( delay, . 65 ).connect( verb, . 35 ) . spread (. 975)
.note.seq( sine( btof(8),7,0), 1/8, 0)
.note.seq( sine( btof(4), 3,0 ), \(1 / 16,1\) )
.note.seq( sine( btof( 8 ), 7,7 ), 1/6, 2 )
. loudness.seq( sine(4.33,.35,.7) )
kik = Kick()
.trigger.seq( 1,1/4)
hat \(=\operatorname{Hat}(\{\) decay:. 0125 \})
.trigger.seq( \([1, .5], 1 / 4,0,1 / 8)\)
bass = Synth ( 'bass.hollow' )
.note.seq( \([0,1,2,-1], 1\) )
.trigger.seq( \([.75, .5, .25],[1 / 4,1 / 8])\)

\section*{02 \\ Early}

Generative
Art



















































Are these the result of:
- Patterns
- Games
- Mathematical functions
- Algorithms


M/76

Transformation de carrés concentriques,
Vera Molnar 1976

\section*{Before computers, there were plotters}


\(F+F--F+F\)

Are these the result of:
- Patterns
- Games
- Mathematical functions
- Algorithms


Ken Knowlton and Leon Harmon, Computer Nudes: studies in perception, 1967


Fred Whipple, Stochastic
Painting, 1968

\section*{Stochastic Painting Rules}
1. The first pair give \(x\) and \(y\) on a canvas coordi-
nate system for the starting point.
2. The first of the second pair, taken as a decimal of \(360^{\circ}\), gives a direction from the starting point; the second,' multiplied by a unit distance, say a centimeter or half an inch, measures a distance in this direction.
3. From the end of the first line the first number of the next pair measures a distance; the second, multiplied by \(15^{\circ}\), measures an angle turned counterclockwise from the tip of the previous line.
4. Successive lines are developed by successive number pairs from the ends of the previous lines or from the outer sides of closed areas.
5. We now must have a rule for closing the areas. I first tried a rule that produces areas that are all triangles or polygons with no internal angles greater than \(180^{\circ}\). I chose to join the figure at the end of a line when any projection of a line was pointed towards the originating side of the polygon. This leads frequently to several lines radiating from a point, which gives some sense of three-dimensionality to the final painting.
6. At the edges of the canvas I first adopted the simple rule of extending the line by equal-angle reflection.
7. When the canvas is completely covered, the choice of colors can be made by successively numbering each closed area by a number taken in sequence from a random-number table. The nature of the painting can be quite affected by ruling that contiguous areas may or may not receive the same color. I chose to eliminate contiguous areas of the same color thereby ending up with colored areas all of polygonal character.
8. If the tubes of paint are numbered successively, in any order, ten random numbers distribute the ten colors among the numbers from 0-9.
9. The remainder of the operation, as in any number painting, permits the painter to choose textures and shades at will. Or, if he wishes, he can mix a certain amount of white with the paint for each area

Fred Whipple, Stochastic
Painting, 1968

Are these the result of:
- Patterns
- Games
- Mathematical functions
- Algorithms


Are these the result of:
- Patterns
- Games
- Mathematical functions
- Algorithms

PLSF19942PLM47399

\section*{AARON, 1995.}
programmed in C


\section*{Coloring Puzzles}

Coloring puzzles
OUsing only 4 colors


\section*{Coloring Puzzles}

Coloring puzzles
OUsing only 4 colors
ONo adjacent shape can have the same color


\section*{Coloring Puzzles}

Coloring puzzles
OUsing only 4 colors
Scratch
Ovisual coding for kids
OMade by the media lab in 2003


LET'S DO IT OURSELVES! Grab a paper and some coloring tools.

And generative art is not just visual!

\section*{Generative Music}
https://gibber.cc/

\section*{Brian Eno's Discreet Music 1975}

Operational diagram for "Discreet Music"

\({ }_{04}\) Modern Generative Art

\section*{Generative Artworks}


Robert Hodgin,
2010


Matt Pearson,
2010
All 3 pieces created by the same algorithm

\section*{Blockchain and Generative Art}
- Used to provide proof of ownership of many types of art
O Art not stored on chain
- Generative art applications

O Code stored on chain
O Takes a hash input that decides the unique output

man



Memories of Qilin in p5.js by Emily Xie 2022


Bored Ape Yacht Club 2021

\section*{Generative architecture}


Digital Grotesque II


\section*{Digital Grotesque II}


\section*{Generative art tools}

\section*{-Processing}

Olts own language with Java-like syntax OJavascript library p5.js
OPython module
- Cinder
OC++
-Openframeworks

> OC++ toolkit
- Nodebox

ONode-based w/ GUI \& Python options


Saturazione, Stefano Contiero, Processing, 2021
- Nannou
- In Rust
- VVVV
- Visual language
- OpenRNDR
- In Kotlin / Java

\section*{Processing}

\section*{from p5 import *}
```

def setup():
size(100, 100)

```
```

def draw():
text_size(64)
fill(0, 140)
text("8", (0, 60))
text("8", (15, 65))
text("8", (30, 70))
text("8", (45, 75))
text("8", (60, 80))

```
if \(\underset{\operatorname{run}()}{\text { name__ }}=\) ' main__:

\section*{Cybernetic art}
- Any kind of feedback-driven art
- Crowdsourced data

OInteractive art exhibits


\section*{Cellular Automata}
https://math.hws.edu/eck/js/edge-of-chaos/CA.htm|
Uses a set of rules to decide the next state
On the edge of stability and chaos
Can create complex patterns or simple repetitions
88 unique elementary cellular automata
OBinary, 1D, based on the state of a cell and its nearest neighbors
Asynchronous vs synchronous updating
Stochastic (random) cellular automata or locally interacting
 Markov chains


Al Art

\section*{Al Art (state of the art 2015)}



Unsupervised, Refik Anadol 2022
Trained in 200 years of MoMA exhibitions - currently in the MoMA

\section*{Text-To-Image GUIs}
- Stable diffusion, Sept. 2022 [1, 2]

\section*{SopenAI}
- DALL-E 2, April 2022 [3]
- Latent diffusion (precursor to Stable Diffusion), April 2022 [4, 5]
- Tools these use:

O GPT-3 [6]
O \(\operatorname{CLiP}[7,8]\)

\title{
stability.ai
}
[1] https://huggingface.co/spaces/stabilityai/stable-diffusion
[2] https://github.com/CompVis/stable-diffusion
[4] https://github.com/CompVis/latent-diffusion
[5] R. Rombach, A. Blattmann et al, CPVR '22 Oral, https://arxiv.org/pdf/2112.10752.pdf
[6] https://arxiv.org/pdf/2005.14165.pdf OpenAI 2020
[7] https://github.com/openai/CLIP OpenAl 2021
[8] A. Radford, J.W. Kim, et al., ICML 2021 https://arxiv.org/pdf/2103.00020.pdf

\section*{Ethical concerns with datasets}
- Representation
- Graphic imagery


\section*{Why hasn't AI Art Always existed?}
- Too small of data sets
- Unlabeled data
- Long processing / training times


Questions?```

